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ABSTRACT: Computer programs have been developed to predict phase separation, flow-
induced phase structure, and structure-dependent mechanical properties of binary poly-
mer mixtures. The phase separation is simulated by solving a two-dimensional
Langevin equation with Flory–Huggins free energy using the finite difference method
under periodic boundary conditions. The change of phase structure due to flow is pre-
dicted by adding a shear flow term to the equation. By generating a finite element mesh
from the calculated phase structure, the stress analysis is carried out for estimating the
mechanical properties of the system using the finite element method. The elastic modu-
lus and thermal expansion coefficient based on the phase structure were numerically
investigated for various volume fractions and properties of components using the devel-
oped programs. q 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 807–813, 1998
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INTRODUCTION Young applied a finite element analysis to study a
predictive model for particulate-filled materials.6

The usage of these models are, however, restrictedThe characteristics of polymer mixtures, such as
within narrow limits because it is difficult to con-polymer alloys and blends, have been investigated
sider the change of the structure, size, and shapeto develop materials with superior properties. Al-
of the droplets. An understanding of the relationmost all commercially important polymer alloys
between properties and structures is still lackingand blends exhibit phase separation and have
because of structural complexity.their own fine structures. The morphology has an

influence on their properties. Many theoretical The phase separation is phenomenologically
and empirical models were proposed for estimat- described by the Cahn–Hilliard–Cook model,7,8

ing the properties of mixtures. Several models which is a diffusion equation for spinodal decom-
were summarized for the elastic modulus1 and position. This equation was numerically solved
the thermal expansion coefficient.2 A model for and used for the investigation of phase separation
the prediction of the elastic response over a wide by Petschek and Metiu,9 Chakrabarti et al.,10 Ari-
range of concentration was presented for spheri- yapadi et al.,11 and Chen et al.12 These previous
cal particulate composites by Farber and Farris.3 studies indicate that the Cahn–Hilliard–Cook
Predictive models based on micromechanics were equation can be used for the prediction of phase
studied for particulate composites.4,5 Guild and separation in binary polymer systems.

The aim of our study was the development of
computer programs for predicting the phase
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structures and mechanical properties of binary
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tion of the relationship between the structures
and properties. The phase structure due to phase
separation was simulated in the previous arti-
cle.13 The effect of polymer properties, which are
the degree of polymerization, segment length, and
solubility parameter, on the phase separation and
structure was numerically investigated there. In
this article, moreover, the change of the phase
structure owing to shear flow was computed.
Then, the mechanical properties, elastic modulus,
and thermal expansion coefficient were predicted
from the computed structures by a stress analysis
using the finite element method.

THEORY

Figure 1 Flow chart for computation.
The phase separation of binary polymer mixtures
is described in dimensionless form by the follow-
ing equation, which is derived from the nonlinear Parallel model:
Langevin equation and Flory–Huggins free en-
ergy: am Å (a1E1 f1 / a2E2 f2) / (E1 f1 / E2 f2) (5)

Ìf /Ìt Å (1
2 )Ç2(0f / f3 0 Ç2f ) 0 Çuf Series model:

(1)
am Å a1 f1 / a2 f2 (6)

where f is the order parameter related to the vol- The parallel model for E and the series model for
ume fraction of one of the polymers; t , the time;

a are also called the additive rule.
and u , the velocity. The last term of the equation These models are usually considered as upper
means the effect of flow on the phase structure. and lower bounds. There are other models which
Here, we consider a simple shear flow: more closely describe practical observations of

particle-dispersed systems, for example, the
u Å (g

h
y , 0, 0) (2) Hirsh model, Takayanagi model, and Counto

model for the elastic modulus and the Kerner
g
h

is the shear rate in the x–y–z rectangular coor- model, Turner model, and Schapery model for
dinates. thermal expansion. However, we should select a

The elastic modulus E of binary mixtures is model according to the shape and properties of
simply described by the following models: the particles in actual usage. In this article, the

parallel model and series model were used for the
Parallel model: discussion on the calculated results.

Em Å E1 f1 / E2 f2 (3)
CALCULATION

Series model:
The flow chart for computation is shown in Figure

Em Å E1E2 / (E1 f2 / E2 f1) (4) 1. Two kinds of main analysis programs have been
developed in two-dimensional space. One is an
analysis program of phase separation using thewhere f is the volume fraction of the component

and subscripts m , 1, and 2 denote the mixture finite difference method (FDM). The other is a
stress analysis program using the finite elementand components 1 and 2, respectively.

For the thermal expansion coefficient a, the method (FEM). At the beginning, the analysis
of phase structure is carried out. The previousmodels become as follows:
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Table I Calculation Conditions

For computing phase structures

Lattice grid 128 1 128
Initial state Miscible
Boundary Periodic
Fraction of polymer 2 0.1–0.9
Phase separation time 200
Shear rate 1
Shear strain 2

For predicting mechanical properties
Figure 2 Finite element mesh and boundary condi-
tions for predicting the elastic modulus. Elastic modulus E1 /E2 Å 1/10, 10/1

Thermal expansion coefficient a1/a2 Å 10/1
Poisson’s ratio v1 Å v2 Å 0.4

equation for phase separation is solved for simu- Boundary Parallel
lating the structure change due to phase separa-
tion and shear flow. Input data are the volume
fraction, the size of analysis grid, the time, and

virtually introduced out of the region and alongthe shear rate. Then, the calculated results of
the upper and right sides. Then, it is set that thestructures are output in a data file for the follow-
nodes on the upper and right sides can only slideing analysis. Next, the stress analysis is per-
on the surface of the neighbor rigid body. The y -formed for the calculated structures by the FEM.
directional displacement of the nodes located onThe macroscopic elastic modulus and thermal
the x axis and the x-displacement of ones on theexpansion coefficient of the mixture system are
y axis are constrained. In actual calculation, theestimated from the results of the stress analysis
finer mesh and necessary boundary conditions areand the mechanical properties of two polymer
automatically generated from each phase struc-components.
ture. By giving a forced displacement for E andFigure 2 shows a finite element mesh and
a temperature change for a, the region will beboundary conditions for predicting the elastic
deformed like the broken line shape. The elasticmodulus, and Figure 3, for the thermal expansion
moduli in the x and y directions, Ex and Ey , arecoefficient. Triangular plane stress elements are
estimated from the summation of the nodal forcesused for the analysis. Boundary conditions are
Fx and Fy using the following equations, respec-defined to keep a rectangular shape of the region.
tively:In other words, the upper side is parallel to the

lower side, and the right side is parallel to the left
Ex Å ∑ FxiLx / (DxLy ) (7)side for any given time. To achieve these condi-

tions, two rigid bodies, of which the elastic moduli
Ey Å ∑ FyiLy / (DyLx ) (8)are large enough to prevent their deformation, are

The thermal expansion coefficients, ax and ay , are
calculated from the nodal displacements Dx and
Dy , respectively:

ax Å Dx / (LxDT ) (9)

ay Å Dy / (LyDT ) (10)

Calculation conditions are summarized in Ta-
ble I. A lattice grid of 128 1 128 was used for
computing the phase structures. It was assumed
that two polymers are in a miscible region at the
initial time and then quenched in an immiscibleFigure 3 Finite element mesh and boundary condi-

tions for predicting the thermal expansion coefficient. region. As the thermal noise term is neglected,
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than that of fraction 0.3. The separated structure
is different from that of fraction 0.3 and is called
a percolated type, and it is coarsening as it is with
time. Calculated results are verified by comparing
them with experimental ones on the time evolu-
tion of the wavenumber during phase separation
in the previous article.13

Figure 5 shows phase structures calculated for
various average fractions at a time of 200. When
the average fraction is 0.2 and less, or 0.8 and
more, the phase separation does not occur; there-
fore, these fractions are in the miscible region.
For the average fractions of 0.3 and 0.4, the mor-
phology becomes a droplet and matrix structure,
in which the droplet is polymer 2. When the frac-

Figure 4 Computed phase structure during phase
tion is 0.4, droplets are greater than those in frac-separation.
tion 0.3, and some conjunctions of droplets are
observed. If the fraction is 0.5, the structure
shows a percolated type because the system isand to start the phase separation, the initial frac-
symmetric. For the fractions of 0.6 and 0.7, thetions were chosen to be randomly distributed be-
structures become droplet and matrix ones again;tween 00.01 and 0.01 about the average fraction
however, the droplet is polymer 1.as the initial condition. The periodic boundary

A simple shear flow was applied to the calcu-condition is used to consider an infinite domain.
lated structures caused by phase separation. TheThe average fraction of polymer 2 is varied from
structures deformed by shear flow are shown in0.1 to 0.9 in an interval of 0.1. Computer runs
Figure 6. The flow is caused by moving the upperwere performed out to a nondimensional time of
side left to right. The miscible phases for fractions200, at which the phase separation will be in the
0.2 and 0.8 have no change. The droplets are ex-late stage of the decomposition and be almost com-
tended and deformed in the flow direction. Thepleted. After phase separation, a shear flow of a
percolated structure is also extended to the flowshear rate of 1 was applied to the separated struc-
direction as it still remains the percolated state.tures for a time of 2, namely, the shear strain
Since the structural orientation is clear, macro-becomes 2. For predicting mechanical properties,
scopic properties in the flow direction are easilytwo cases of calculations were carried out for the
expected to be different from those in its trans-elastic modulus. Elastic moduli of components 1
verse direction.and 2 are 1 over 10 and 10 over 1, while the ratio

These results are calculated in a nondimen-of thermal expansion coefficients are 10 over 1
and both Poisson’s ratios are 0.4. The boundaries
of the region are parallel.

RESULTS

Phase Structures

Computed phase structures during phase separa-
tion are shown in Figure 4 for volume fractions
0.3 and 0.5. At the initial time, the fractions are
unique about each average fraction. For fraction
0.3, a little fluctuation appears at time 50, and
this fluctuation grows up to the droplet and ma-
trix-type structures at time 100. After that, the
droplets become larger because of coarsening. For
fraction 0.5, the phase separation is already ob- Figure 5 Phase structures calculated for various av-

erage fractions at a time of 200.served at time 50 and it begins at an earlier time
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Figure 8 Effect of the shear flow on the relative elas-
Figure 6 Phase structures deformed by shear flow. tic modulus.

dicted elastic modulus to that of polymer 1. Thesional scale. Therefore, to apply the simulation to
broken line indicates the parallel model, which isactual polymer alloys and blends, the calculation
the same as the additive rule of mixing, and theshould be carried out in a real scale. The relation
dash–dotted curve denotes the series model. Thebetween a nondimensional scale and a real scale
predicted results are just between both models.was discussed in our previous work.13 For exam-
As the difference between the x and y results isple, when the difference between solubility pa-
small, it can say that the mixture is still isotropicrameters is small, the calculation demonstrates
on the elastic modulus after phase separation.that the interface between compositions becomes

Figure 8 shows the effect of the shear flow onvague in a real scale. In this case, the region
the relative elastic modulus. The dotted curve la-where the percolated structure is found will be
beled with no-flow is the same result as the x-much wider than the single 50/50 composition
elastic modulus shown in the previous plot andrange in practice.
shows the initial property before flow. By applying
the shear flow, the elastic modulus increases from

Mechanical Properties the initial one in the x or flow direction, but de-
creases in the y direction. It was predicted thatThe computed relative elastic moduli of mixtures
the anisotropy of the elastic modulus is caused bywith separated structures are plotted against the
the flow.volume fraction as shown in Figure 7. The relative

The predicted relative thermal expansion coef-elastic modulus is defined as a ratio of the pre-
ficients, which are evaluated against that of poly-
mer 2, are shown in Figure 9. The broken line
indicates the series model or the additive rule and
two dash–dotted curves denote the parallel
model. The parallel model is indicated with the
upper curve when E1 ú E2 and with the lower one
when E1 õ E2 . If E1 is equal to E2 , it is the same
as the series model. The predicted results demon-
strate that the relative thermal expansion coeffi-
cients increase from the series model when E1 /E2

Å 10/1, but decrease when E1 /E2 Å 1/10 as the
parallel model suggests. The elastic modulus has
a large effect on the thermal expansion. The x and
y results are almost similar in each case, so it
was said that the anisotropy of the mechanical
properties is not caused by phase separation only.

Figure 10 shows the effect of the shear flow onFigure 7 Predicted elastic modulus against volume
fraction. the thermal expansion coefficient. For E1 õ E2 ,
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Table II Effect of the Phase Structure
on Properties

Phase separation

Es Å Ex Å Ey õ Ea

If E1 ú E2 , as Å ax Å ay õ aa

If E1 õ E2 , as Å ax Å ay ú aa

Shear flow in x direction

Ey õ Es õ Ex

If E1 ú E2 , ax õ as õ ay

If E1 õ E2 , ay õ as õ ax

Subscript s denotes the additive rule and a shows pro-
Figure 9 Predicted relative thermal expansion coef- perties after phase separation or initial properties before

shear flow; other properties of the components are a1 ú a2ficients versus volume fraction.
and n1 Å n2.

the thermal expansion coefficient increases in the
as depends on the elastic modulus of the compo-x direction with flow and decreases in the y direc-
nents. If E1 is greater than E2 , as becomes lesstion. Inversely, in the case of E1ú E2 , it decreases
than aa . Otherwise, as is greater than aa . Byin the x direction and increases in the y direction.
applying a shear flow in the x direction, the anisot-The opposite tendency is due to the elastic modu-
ropy of the properties is caused by the structurallus. This was considered as follows: As shown in
change. Ey decreases from Es , and Ex increasesthe phase structure change due to flow, the drop-
from Es . When a1 is greater than a2 and if E1 islets are deformed and laminated along the x direc-
greater than E2 , ax is smaller than as and ay istion by shear flow. The structure becomes similar
larger than as ; otherwise, the tendency is inverse.to a parallel structure. Therefore, we can find that

ax approaches the curve of the parallel model and
ay shifts to the line of the series model.

The effect of the phase structure on the proper- CONCLUSION
ties is summarized in Table II. The elastic modu-
lus and thermal expansion coefficient after phase Computer programs have been developed to pre-
separation are isotropic and are defined as Es and dict phase structures and mechanical properties
as , respectively. Es is less than Ea , where sub- for binary polymer mixtures. Structure changes
script a denotes the additive rule. The change of due to phase separation and shear flow were in-

vestigated for various average fractions by com-
puter simulation. The developed program could
be used to reveal the effect of phase structure on
the elastic modulus and thermal expansion coef-
ficient of binary mixtures.
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